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Abstract

This paper analyzes the root causes of safety-rclatccl software errors in safety -
critical, embedded systems. The results show that software errors identified as po-
tentially hazardous to the system tend to beproduced by different error mechanisins
than non-safety-related software crrors. Safety-related software errors arc shown to
arise most commonly from ( 1) discrepancies between the docume nted requircinents
specifications and the requirements needed for correct functioning of the system and
(2) misunderstandings of the software's interface with the rest, of the system. The
paper uses these results to identify methods by which requirements errors can be pre-
vented. The goa is to reduce safety-related software errors and to enhance the safety
of comp lex, embedded systems.

I. Introduction

This paper examines 3S7 software errors uncovered during integration and systern testing
of two spacecraft, Voyager anti Galileo. A software error is defined to be a software-related
discrepancy between a computcd, observed, or measured value or condition and tile true,
specified, or theoretically correct value or condition [6]. lach of these software errors was
documented at the time of discovery by a form describing the problemor failure. The form
also rccorded the subsequent analysis and the corrective actions taken.

As part of the standard procedure for correcting each reported software error, the failure
effect of each is classified as negligible, significant, or catastrophic. Those classified as signif-
icant or catastrophic arc investigated by asystemns safety analyst as representing potential
safet y hazards [1 3]. For this study the 74 software errors on Voyager and 121 software errors
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on Galileo documented as having potentially significant or catastrophic cffects arc classified
as safety-mlatcd.

The spacecrafts’ software is safety- critical in that it inonitors and controls components
that can be involved in hazardous systcem behavior [11]. The software must exccute in a
system context without contributing unacceptable risk.

Ilach spacecraft involves embedded software distributed on several different flight comput-
crs. Voyager has roughly 18,000 lines of source code; Galileo has over 22,000 [1 8]. I'mbedded
software is software that runs 011 a computer system that is integral to a larger system whose
primary purpose is not computational [G]. The software on both spacecraft is highly inter-
active interms of the degree of message-passing amon g system components, the need to
respond in real-tilnc to monitoring of the hardware and environment, and the complex tim-
ing issues among parts of the system. The software development for each spacecraft involved
multiple teams working for aperiod of years.

The purpose of this paper is to identify the extent and ways in whichthe cause/cflcct
relationships of safety-rclatccl software errors differ fromtlic cause/cfTcct relationships of
llol]-safety-related software errors. Preliminary results were reported in [1 4].1n particu-
lar, the analysis shows that errors in identifying or understanding functional and interface
requirements frequently lead to safety-rclatcd software errors. This distinction is used to
identify methods by which the common causes of safety-rclatcd software errors can betar-
geted during development. The goal is to improve system safety by understanding and,
where possible, removing the prevalent sources of safety-related software errors.

11. Methodology

The study described here characterizes the root causes of the safety-rclatccl software errors
discovered during integration andsystemn testing. Therecent work by Nakajo and Kuine on
software error callsc/effect relationships Offers anappropriate framework for classifying the
software errors [] 6]. Their work is extended here to account for the additional complexities
operative in large, safety-critical, embedded systems with evolving requirements driven by
hardwarc and environmental issues.

As will be seen in Section 1V, previous studies of the causes of software errors have
dealt primarily with fairly simple, non-cimmbedded systemns in familiar application domains.
Requirements specifications in these studies gencrally have been assumed to be correct, and
safety issues have not been distinguished from program correctness. The work presented
here instead builds 011 that in [1 6] to analyze software errors in safety-critical, embedded
systems with developing rcquirements.

Nakajo and Kumc’s classification schemeanalyzesthree pointsinthe path from a software
crror backwards to its sources. Thisapproach allows classification not only of the documented
software error (called the program fault), but also of the earlier humnan error (the root cause,
c.g.,amisunderstanding of an interface specification), and, before that, of the process flaws
that contribute to the likelihood of the error's occurrence (ec.g., inadequate communication
between systems enginecring and software development teams).

The classification scheme thus lcads backwards in time from the evident software error
toan analysis of the root cause (usually acommunication error or an error inrecognizing or




deploying requirements), to an analysis of the software development process. 13y comparing
common error mechanisms for the software errors identified as potentially hazardous with
thosc of the other software errors, the prevalent root causes of the safety-related errors arc
isolated. The classification of the sources of error then is applied here to determine coun-
termeasures which may prevent similar error occurrences in other safety-critical, embedded
systems. This paper thus uses the classification scheme to asseinble an error profile of safety-
rclated software errors and to identify development methods by which these sources of error
can be control] cd.

11”1. Analysis of Safety-Related Software Irrors

A. Overview of Classification Scheme

An overview of the classification scheme follows, adjusted to the needs of safety-critical,
embedded software. Scc [16] for additional details on how errors arc categorized. An ongo-
ing, multi-project investigation will address the issue of repeatability (do different analysts
classify a given error in the same way?).

« Program Faults (1 Jocumented Software Frrors)

A. Internal Faults (e.g., syntax)

B.Interface Faults (interactions with other’ system components, such as transfer of
data or control)

C. Functional Faults (operating faults: omission or unnecessary operations; condi -
tional faults: incorrect condition or limit values; behavioral faults: incorrect be-
havior, not conforming to requireinents)

o Human Errors (Root Causes)

A. Coding or Editing Frrors
B1. Communication Frrors Within a Tcam (inisunderstanding software interface spec-
ifications)

B2. Communication Frrors 13ctween Teams (misunderstanding hardware interface spec-
ifications or other team’s software specifications)

C1. Frrors in Recognizing Requirements (misunderstanding specifications or problem
domain)

C2. Frrors in Deploying Requirements (problems implementing or translating require-
ments into a design)

« ProcessFlaws (] "'laws inControl of System Complexity -+ Inadequacies in Communi-
cation or Development Methods)

A. Inadequate Code Inspection and Testing Mcthods




B1. inadequate Interface Specifications - Inadequate Communication (among soft-
ware developers)

112. Inadequate Interface Specifications - Inadequate Communication (between soft-
ware and hardware developers)

C1. Requirements Not ldentified or Understood + Incomplete Documen tation

C2. Requirements Not ldentified or Understood -I- Inadequate Design

Clearly, the attribution of a key human error ancl a key process flaw to each software
error oversimplifies the cause/effect rclationship.However, the identification of these factors
allows the characterization of safety-rclatcc{ software errors in a way that relates fcatures of
the development process and of the system under development to the safety conscquences
of those features. Similarly tile association of each software crror with a human error, while
unrcalistic (in what sense is a failure to predict details of system behavior an error?), allows
a useful association between human factors (such as misunderstanding the requircients or
the underlying physical realities) and their safet y-related consequences.

B. Program Faults

‘I'able 1 (sce Appendix) shows the proportion and number (in parentheses) of software errors
in the three main categories of Internal Faults, Interface Faults, and Functional FFaults for
both spacecraft. The right-hand columns provide the same information for only the safety -
rclated software errors.

Safety-rclatccl software errors account for 55% of the total software errors for Voyager
and 48% of the total software crrors for Galileo discovered during integration ancl system
testing.

Few internal faults (e.g., coding errors internal to a software module) were uncovered
during integration and system testing. An cxamination of software errors found later during
opcrations also shows fewinternal errors. 1t appears that these coding errors arc being
detected and corrected before system testing begins. They thus arc not discussed further in
this paper.

At the high level of detail in g able 1, safety-related and non-safety-related software errors
display similar proportions of interface and functional faults. Functional faults (operating,
conditional, or behavioral discrepancics with the functional requirements) arc the most com-
mon kind of software error.

Table 2 examines the predominant type of program fault, the functional fault, in more
detail. At thelevel of detail inTable 2, differences between the spacecraft begin to appear.
On Voyager fully half the safety-related functional faults arc attributable to behavioral faults
(the software behaving incorrectly). On Galileo, a slightly greater percentage is clue to
operating faults (nearly always a required but omitted operation in the software) than to
behavioral faults. often the omitted operation involves the failure to perforin adequate
reasonableness checks on data, input to a module. This frequently results in an error-recovery
routine being called inappropriately.

g able 2 shows that conditions] faults (nearly always erroneous valucs 011 conditions or
limits) tend to be safety-related on both spacecraft (73% total). Even though adjusting




the values of liinit variables during testing is considered to be fairly routine, the case of
change obscures the difficulty of determining the appropriate value and the safety-related
consequences of an inappropriate limit value.

Irroncous values (eg., of dcadbandsordeclay timers) often involve risk to the spacecraft
by causing inappropriate trigger-ing of an error-rccovcry response or by failing to trigger
anccded response. The association between conditional faults and safety-rclatccl software
errors emphasizes the importance of specifying the correct values for any data used in control
decisions in safety-critical, cimnbedded software,

The anaysis suinmarizedin ‘Jable 1 aso identifiesinterface faults (incorrect, interactions
with other system components,suchasthetiming or transfer of data or control) as a signif-
icant problemn (35% of the safety-related program faults on Voyager; 1970 on Galileo). Sect.
IV below describes how the high incidence of interface faults in these complex, emmbedded
systems contrasts with the low incidence of interface faults in earlier studies on simpler,
standalone software.

C. Relationships Between Program Jaults and Root Causes

The second step in the cause/cfl”cct analysis is to trace backwards in time to the human
factors involved inthe program faults that were discovered during integration and system
testing. Tables 3a and 3b summarize the rclationships between the major types of prograin
faults and the key contributing causes.

For inlerface faults, the major human factors arc either communication errors within a
development teamn or communication errors between a development teamn and other teams. In
the latter case, a further distinction is madebetweenmisunderstanding hardware interface
specifications and misunderstanding the interface specifications of other software compo-
nents. From ‘1’able 3a it can be seen that communication errors between development teams
(rather than within teams) isthe leading cause of interfacefaults (93% on Voyager, 72%
on Galileo). Safety-related interface faults arc associated overwhelmingly with commaunica-
tion errors between a development team and others (often between software developers and
systems engineers), rather than with communication errors within a team.

Significant differences appear in the distribution of fault causes between safety-related
and )lon-safety-related inter-face faults. The pritnary cause of safety-rclatccl inierface faults is
misunderstood hardware interface specifications (65% on Voyager; 48% on Galileo). Ixamples
arc faults caused by wrong assumptions about the initial state of relays or by uncxpected
heartbeat timing patterns in a particular operating modec. On the other hand, the root causes
of Ilon-safety-related interface faults arc distributed more evenly between misunderstood
hardware specifications and misunderstood software specifications. The profile of safety -
related interface faults assembled in Table 3a emphasizes the importance of understanding
the software as a set of embedded components in a larger system.

The primary cause of safety-related functional faults is errors in recognizing (understand-
ing) the requirements (62% on Voyager, 79% on Galilco). On the other hand, non-safety -
related functional faults arc more often caused by errors in deploying- implementing- -the
requirements.

More specifically, safety-related conditional faults (erroneous condition or limit values)
arc almost always caused by errors in recognizing requirements. Safety-rclatcc] operational




faults (usually the omission of a required operation)and behavioral faults arc also caused
by errors in recognizing requircments more often than by errors in deploying requirements.
‘I"'able 3b reflects deficiencies in the documented requircinents as well as instances of unknown
(at thetime of requirements specification) but necessary requirements for the two spat.ccraft.
Section V examines how andto what extent the discovery of requirements during testing
can be avoided in safety-critical, embedded systems.

In sumimary, difliculties with requirements is the key root cause of the safety-related
software errors which have persisted untilintcgrationand system testing. The tables point
to errors in understanding the requirements specifications for the software/systcn~ interfaces
as the major cause of safety-related interface faults. Similarly, errors inrecognizing the
requirements is the major root cause lcading to safctY-l-elated functional faults.

D. Relationships Between Root Causes and Process Flaws

Intracing backwards fromthe program faults to their sources, features of the system-
development process can be identified which facilitate or enable the occurrence of errors,
1 Jiscrepancies between the difliculty of the problem and the mecans used to solve it may
permit hazardous software errors to occur [4].

The third step of the error analysistherefore associates a pair of process flaws with cach
program fault [1 6]. The first clement in the pair identifies a process flaw or inadequacy
in the control of the system complexity (c.g., requircinents which arc not discovered until
system testing). The sccond element of the pair identifies an associated process flaw in the
communication or development methods used (e.g., 1mprecise or unsystematic specification
methods).

The two elements of the process-flaw pair are closely related. I'requently, as will be seen
in Sect. V, a solution to onc flaw will provide a solution to the related flaw. lor example, the
lack of standardization evidenced by an ambiguous interface specification (an inadequacy in
the control of system complexity) andthe gapininterteamn communication evidenced by a
misunderstood interface specification (an inadequacy in the communication methods used)
might bothbe addressed by the project-wide adoption of the same CASE tool.

‘I'able 4a summarizes the rclationships between process flaws ant] the most common causes
of interface faults (misunderstanding software interface specifications and misunderstanding
hardware interface specifications). The rightimost coluinns provide information about the
safety-rclatccl interface faults.

For safety-related interface faults, the most common complexity-control flaw is inter-
faces not adequately identified or understood (54% 011 Voyager; 87% on Galileo). Themnost
common safety-related flaw in the cornmunication or development methods used 011 Voyager
is hardware behavior not documented (46%). On Galileo the most common safety-related
flaws arc lack of communication belween hardware and software tcams (35%) and inierface
specifications known but not documented o communicated (35%).

Anomalous hardware behavior is a more significant factor in safety-rclatcc] than in non-
safety-rclatccl interface faults. It is often associated with interface design during system
testing, another indication of a unstable software product.

There arc significant, variations in the process flaws that cause errors between the two
spacccraft. Interface design during testing is involved inal most one-fifth of the safety-critical




interface faults on Voyager, but innone of them on Galileo. Thisis because on Voyager a set
of related hardware problems generated ncarly half the safety-rclatecl interface faults. On
the other hand, the problem of interface specifications that arc known but not documented
is more common on Galileo. This is perhaps due to the increased complexity of the Galileo
interfaces.

‘J able 4b summarizes the relationships between process flaws and thenajor root causes
of functional faults (recognizing and deployiug requirements).

FFor functional faults, requirements not identified and requirements not understood are
the most cornmon complexity-control flaws. Safety-related functional faults arc more likely
than Ilon-safety-rc]ated functional faults to be caused by requirements which have notbeen
identified.

With regard to flaws in the comimunication or development methods, missing require-
ments arc involved in nearly half (42%) the safety-rclatcc{ errors that involve recognizing
requircments. Inadequate design is the most common flaw leading to errors indeploying
requirements on Voyager. 011 Galileo, incomplcte document.ation oj requirements is as im-
portant a factor for safety- related errors, but not for non-safety-related errors.

Imprecise or unsystematic specificalions are twice as likely to be associated with safety -
related functlional faults as with noll-safety-rclatccl functional faults. Similarly, unknown,
undocumented, or wrong requirements arc a greater cause of safety-rclatcc] than of non-
safety-related crrors.

These results suggest that the sources of safety-related software errors lic farther back in
the software development process- ininadequate requirements- whereasthe sources of non-
safety-rcla.tcd errors more coinmonly involve inadequacies in the design phase.

IV. Comparison of Results with Previous Work

Although software errors and their causes have beenstudied extensively, the current work
differs from most of theprior investigations in the four following ways:

1) The software chosen to analyze in most studies is not embeddedin a complex system as
it is here. The consequence is that the role of interface specifications in controlling software
hazards has been underestimated.

2)Unlike the current paper, most studies have analyzed fairly simple systems in familiar
and well-understood application domains. Consequently, fcw software errors have occurred
during system testing in most studies, leading to a gap in knowledge regarding the sources
of these Inorc-persistent and often more hazardous errors.

3) Most studies assume that the requirements specification is correct. On the spacecraft,
asinmany large, complex systems, therequirciments evolve as knowledge of the system’s
bchavior and the problem domain evolve, Similarly, most studies assume that rcquirements
arc fixed by thetime that systems testing begins. This leads to a underestimation of the
impact of unknown requirements onthe scope andschedule of the later stages of the software
developient process.

4) The distinction between causes of safety-critical and non-safety-critical software errors has
not been adequately investigated. ilorts to enhance system safety by specifically targeting
the causes of safety-related errors, as distinguished from the causes of all errors, can take




advantage of the distinct errorincchanisins, as described in Sect. .

A bricf description of thcscope and results of some related work is given below and
compared with the results presented” in this paper for safet y-critical, embedded computer
syslcins.

Nakajo anti Kume categorized 670 errors found during the software devclopment of two
firmware products for controlling mecasuring instruments and two software products for in-
strument measurement programs {16]. over 90% of the errors were either interface or func-
tional faults, similar to the results reported here.

Unlike the results described here, Nakajo and Kumc found many conditional faults. It
may be that unit testing, as on the spat.ccraft, finds many of the conditional faults prior
to system testing. While the key human error on the spacecraft involved communication
between teams, the kcy human error intheir study involved communication within a devel-
opmen t team. Both studies identified complexity and documentation deficiencies as issues.
However, the software errors onthe spacecraft tendedtoinvolve inherent technical complex-
ity, while the errors identified in the earlier study involved complex correspond ences between
requircments and their implement ation.

Finally, the kcy process flaw that they identified was a lack of methods to record known
interfaces and describe known functions. in the safety-critical, embedded software on the
spacccraft, the flaw was more often afailure to identify or to understa nd the requirements.

Ostrand anti Weyuker categorized 173 errors found during the development and testing
of an editor systcm [19].Only 2% of the errors were found during system testing, reflecting
the simplicity and stability of the interfaces and requirements. Most of the errors (G]%)
were found instead during function testing, Over half these errors were caused by omissions,
confirming the findings of the present study that omissions arc a mmajor cause of software
errors.

Schneidewind and Hoflmann [21] categorized 173 errors found during the development of
four small programs by asingle programmer. Again, there were no significant interfaces with
hardware and little system testing. The most frequent class of errors, other than coding and
clerical, was design errors. All three of the most commondesign errors- extreme conditions
neglected, forgotten cases or steps, and loop control errors- arc also common functional
faults on the spacecraft.

Both the findings presentedin{19,21] ant] in this paper confirm the common experience
that early insertion and late discovery of software errors maximizes the time and cflort that
the correction takes. Krrorsinsertedinthe requirements and design phases take longer to
find and correct than those inserted in later phasecs(becausc they tend to involve complex
software structures). lirrors discovered inthetesting phase take longer to correct (because
they tend to be more complicated and difficult to isolate). This is consistent with the results
in [1 8] indicating that more scvere errors take longer to discover thanlcss severe errors
during systcin-level testing. IFurthermore, this cffect was found to be more pronounced in
more complex (as measured by lines of code) software.

The work done by Indres is a direct forcrunner of Nakajo and Kume’s in that Fndres
backtracked from the error type to thetechnical and organizational causes whichled to each
type of error [4]. Moreover, because he studied the system testing of an operating system, the
software’s interaction with the hardware was a source of concern. I'ndres noted the difficulty
of precisely specifying functional demandson the systems before the programmer had seen




their effect on the dynamic behavior of thesystem. ]lis conclusionthat better tools were
needed to attack this problemstill holds true ecighteen years after he published his study.

Of the 432 errors that I'ndres analyzed, 46% were errors inunderstanding or communi-
caling the problem, or in the choice of a solution,38% were errors inimplementing a solution,
ant] theremaining 1670 were coding, errors. Theseresultsare consistent with the finding here
that software with many system interfaces displays a higher percentage of software errors
involving understanding requircinents or the systemimplications of alternative solutions.

Eckhardt et al., in a study of software redundancy, analyzed the errors intwenty inde-
pendent versions of a software component of an inertial navigationsystem [3]. He found that
inadequate understandi ng of the specifications or the underlying coordinate system was a
major contributor to the program faults causing coincident failures.

Addy, looking at the types of errors that causcd safety problemsin alarge, real-time
control system, concluded that the design complexity inherent in such a system requires
hiddeninterfaces which alow crrors innon-critical software to aflcct safety-c.ritical software
[1]. This is consistent with Selby and Basili’s results when they analyzed 770 software errors
during the UPdating of a library tool [22]. Of the 46 errors documented in trouble reports,
70% were categorized as ‘[wrong” and28% as “missing.“ They found that subsystems that
were highly interactive with other subsystems had proportionately more crrors than less
interactive subsystems.

L.eveson listed a set of common assumptions that arc oftenfalse fOr control systemns,
resulting in software errors [1 1]. Among these assumptions are that the software specification
is correct, that it is possible to predict realistically the software’s execution environment
(e.g., theexistence of transients), and that it is possible to anticipate and speci{ly correctly
the software’s behavior underall possible circuinstances. These assumptions tend to be
true for thesimple systems in which software errors havebeenanalyzed to date and false for
spacecraft and other large, safety-critical, embedded systems. g'bus, while studies of software
errors insimple systelns can assist inU“dCl‘SLanding internal errors orsome functional errors,
they arc of less help inunderstanding the causes of safety-related software errors, which tend
heavily to involve interfaces or rccognition of complex requirements.

Similarly, standard measures of the internal complexity of imodules have limited usefulness
in anticipating Software errors during system testing It is not the internal complexity of a
module but the complexity of the module’s connection to its environment that yields the
persistent, safety-rclatccl errors scenin the embedded systems here [8].

V. Conclusion

A. Recommendations

The results in Sect. 111 indicate that safety-rclatccl software errors tent] to be produced by
different error mechanisms than lloxl-safety-rc]atccl software errors. This means that system
safety canbe directly enhanced by targeti ng the causes of safety-rclatccl errors. Specifically,
the following six recommendations emerge from our analysis of safety-related errors in com-
plex, embedded systems.




1. Focus on the interfaces between the software and the system in analyzing the problem
domain, since these inlerfaces arc a major source of sajcty-related software errors.

The traditional goal of the requirements analysis phase is the specification of the soft-
warc’s external interface to the user. This definition is inadequate when the software is
deeply cmbedded in larger syster Ins suchas spacecraft, advanced aircraft, air-traffic control
units, or manufacturing process-control facilities. in such systems, the software is often
physically and logically distributed among various hardware componcnts of the system. The
hardwarc involved may be not only computers but also sensors, actuators, gyros, and scicnce
instruments [9].

Specifying the external behavior of the software (its transformation of software inputs
into software outputs) only makes sense if the interfaces between thesystemn inputs (e.g.,
environmental conditions, power transicnts) and the software inputs (e.g., monitor data)
arc also spccified. Similarly, specifying the interfaces- especially the timing and dependency
relationships- between the software outputs (e. g., staridentification)and system outputs
(c.g., closing the shutter on the star scanner) is nccessary.[5,10]

System-development issues such as timing (real-time activities, interrupt handli ng, fre-
quency of sensor data), hardware capabilitics and limitations (storage capacity, power tran -
sicnts, noise characteristics), cormmunicationlinks (buffer and interface formats), and the
expected operating environment (temperature, pressu re, radiation) need to be reflected in
the software requirementsspecifications because they arc frequently sources of safety-critical
software interface errors.

Timing is a particularly diflicult source of safety-related software interface faults since
timing issues arc so oftenintegral to the functional correctness of safety-critical, embed-
ded systems. Timi ng dependencices (¢.g., how long input data is valid for making control
decisions) should be included in the software interface specifications. Analytical models or
siinulations to understand system interfaces arc particularly useful for complex,einbedded
systems.

2. Identify sa~cty-critical hazards carly intherequirements analysis.

These hazards are constraints on the possible designs and factors in any contemplated
tradcofls between safety (which tends to encourage software simplicity) and increased func-
tionality (which tends to encourage software complexity) [10, 22]. Many of the safety-related
software errors reported in Sect. 111 involve data objects or processes that would be targeted
for special attention using hazard-detection tcchniques such as those described in [7, 11].
Ioarly detection of these safety-critical objects andincrecased attention to software opera-
tionsinvolving theinmight forestal] safety-related software errors involving them.

3. Use formal specification techniques in addilionto naiural-language soflware requirements
specifications.

Lack of precision and incomplete requirementsled to many of thesafet y-related software
errors seen here. Enough detail is needed to cover allcircumnstances that can be envisioned
(component failures, timing constraint violations, expired data) as well as to document all
environmental assumptions (e.g., how closc to the sun an instrument will point) and as-
sumptlions about other parts of thesystemn (inaximmum transfer rate, consequences of race
conditions or cycle slippage). The capability to describe dynamic events, the timing of pro-
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cess interactions in distinct computers, decentralized supervisory functions, etc., should be
considered in chooosing a formal method [2,4, 5, 15,20,23].

4. Promole informal communica tion among teams.

Many safety-rcjatcd software errors resulted from onc individual or tcam misunderstand-
ing a requirement or not knowing a fact about the system that member(s) of another devel-
opment tecam knew. The goal is to be able to modularize responsibility in a development
project without modularizing communication about the system under development. The
identification and tracking of safety hazards in a systein, for example, is clearly Lest done
across team boundarics.

5. As requirements evolve, communicate thechangesto the development and test teams.

This is bothmore important (because there arc more requirements changes during design
and testing) and more diflicult (because of the number and size of theteams and the length of
the development process) in a large, embedded system than in simpler systems. in analyzing
the safety-r-elated software errors, it is cvident that the determination as to who neceds to
know about a change is oftenimade incorrectly. Irequently, changes that appear to involve
only one team or system component end up affecting other teams or components at some
later elate (soinetiines as the result of incompatible changesin distinct units).

There is also a need for faster distribution} of changes that have beeniade, with the
update stored so as to be fingertip accessible. CASIS tools offer a possible solution to the
difliculty of promulgating change without increasing paperwork.

The prevalence of safety-rc]atccl software errors involving misunderstood or missing re-
quircments points up the inadequacy of consistency checks of requiremnents and code as a
mcans of demonstrating system correctness [1 O]. Code that implements incorrect require-
ments is incorrect if it fails to provide necded system behavior.

Similarly, generating test cascs from misunderstood or missing requirements will not test
system correctness. Traccability of requirements and automatic test generation froin specifi-
cations offers only partial validation) of complex, cinbedded systems. Alternative valid ation
and testing methodssuch as those describedin [9, 11 | offer greater coverage.

G. Include requirements for “defensive design” [1 7).

Many of the safety-rclated software errors involve inadequatc software responses to ex-
treme conditions or cxtreme values. Anomalous hardware behavior, unanticipated states,
events out of order, and obsolete data arc all causes of safety-related software errors on the
spacecraft.

Run-time safety checks on the validity of input data, watchdog timers, delay timers, soft-
ware filters, softwarc-imposed initialization conditions, additional exception handling , and
assertion checking can beused to combat the many safety-critical software errors involving
conditional and omission faults[1 1]. Requirements for error-llalldlillg, overflow protection,
signal saturation limits, heartbeat and pulse frequency,maximum event duration,and sys-
tein behavior under unexpected conditions canbe added and traced into the design. Many
sa.fcty-related functionalfaultsinvolve error-recovery routines being invoked inappropriately
because of erroneous limit values or bad data.

Backward analysis from critical failures to possible causes offers onc check of how de-
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fensive the requirements and design arc [1 2]. Requirements specifications that account for
womt-case scenarios, models that can predict the range of possible (rather thanallowable)
values, and simulations that can discover unexpected interactions before systemn testing con-
tribute to the system’s defense against hazards.

B. Summary and Future Work

In large, embedded systems such as the two spacecraft in this study, the software require-
ments change throughout the software development process, even during system testing,
This is largely due tounanticipated behavior, dynamic changes in the operating environ-
men t, and complex software/llardwarc and software/softwar-c interactions in the systems
being developed. Controlling requirement changes (and, hence, the scope and cost of devel-
opment) is diflicult since the changes arc often prompted by an improved understanding of
the software’s nccessary interfaces with the physical components of the spacecraft in which
it is embedded. Complex timing issues and hardware idiosyncrasies often prompt changes
to requirements or to design solutions.

The analysis presented here of the cause/effect rclationships of safety-rclatccl software
crrors pinpoints aspects of system complexity which merit additional attention. Specifically,
the results have shown that conditional faults (e.g., condition orlimit values) are highly
correlated with safety-related software errors. Opecrating faults (especially the omission of
run-time rcasonableness checks on data) arc also highly correlated with safety-rclatcel soft-
ware errors. Unknown, undocurnented, or erroncous requirements frequent] y arc associated
with safety-related software errors as well. }lardwarc/software interfaces have beenshown
to be a frequent trouble spot because of the lack of communication between teams.

The results presented in this paper indicate anecd for better methods to confront the
real-world issues of developing safety-critical, cinbedded software in a complex, distributed
system. Future work will be dirccted at incorporating knowledge of the distinct error mech -
anisms that produce safety-related software crrorsintotherequirements analysis and vali-
dation processes. Work is also needed on specifying how these results can be used to predict
more precisely what features or combinations of factors in a safety-critical, embedded system
arc likely to cause time-consulnirlg; and hazardous softwarc errors.
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Appendix

Table 1. Classification of Program Faults
Program Faults Safety-Related
Program Faults
Fault Types: V oyager Galileo Voyager Galileo
(134) (253) (74) (121)
Internal Faults 1% ()] 3% (7) 0% (o) 2<% (2)
Interface Faults 34% (46) 18% (47) 35% (26) 19% (23)
Functional Faults _ 65% 87 79% (199) 65% (48) 79% (96)
“|-able 2. Classification of Functional Faults
T T T -
Functional Faults Safety-Relateci
~ 1 Functional Faults
Voyager Galileo Voyager Gadlileo
Functional Fault Types: (87) (199 B (48) 7 (96)
operating faults 22% (19) 43% (85) 19% 9 | 43% (41)
Conditional Faults 26% (23) 10% (22) 31% (15) 18% (17)
Behavioral Faults 5296 (45) 47% (93) 50% (24) | 40% (38)




“l'able 3a. Relationships Causing Intcrface Faults

[ e

Interface Faults

Gdlileo

Safety-Related
Interface, Faults

Voyager

Voyager Galileo
Root Causes (Fluman Errors): (46) 47 - (26) (23)

Communication Within Teams 7% (3) 28% (13) 8% 2 | 22% (5)
Communication Between Teams:

Misunderstood I Tardware

Interface Specifications 50% (23) | 42% (20) | 65% (17) | 48% (11)

Misunderstood Software

Interface Specifications 43% (20) 30% (14) 2.7% (7) 30% (7)

Table 3b. Relationships Causing Functional Faults
Saf ety-Ral ated
. __ Functional Faults Functional Faults
Root Causes (I1uman Errors): Voyager Gadlileo _V_o_yager Galileo
(87) (199) B (48) (96)

Requirement

Recognition

e - S

operating faults 9% (8) 24% 49) 8% (@) 33% (32)

Conditional faults 17% (15) 8% (16) 25% (12) 16% (15)

Behavioral faults 21% (18) 30% (59) 29% 14) 30% (29)
Total A7% (41) 62%  (124) 62% (30) 79% (76)
Requirement

Deployment

Operating faults 13%  (11) 18% (68p) ~ 111% @ 9% 9

Conditional faults % (8 3% () e ) B (2

Behavioral faults 31% 7 | _17% 63)| 2o (b)) Y (9)
Total 53% (46) 38% (V) | 38880 ()" 29% (20)




‘1’able 4a. Process Flaws Causing interface Faults

Safety-Related
Interface Faults Interface Faults
- Voyager Galileo V oyager Galileo
Process Flaws: R o) /R i) B ) B
1. Flaws in Control of System LLLe -
Complexity: -
1 -Interfaces not adequately identified
or understood 70% (32) 85% (40) 54% (14) 87% (20)
2-1lardware behavior anomalies . 30% 14| 15% (7) | 46% (12 13% (3)
ITa. Flaws in Communication or
Development Methods Causing
Misunderstood Software Interfaces:
I-Interface Specifications known but
not documented or communicated 20% 9) | 38% (18) | 8% 2 | 35% (8)
2-Interface design during testing 26% (12) 2% (1) 19% (5) 0% 0)
IIb. Flaws in Communication or
Development Methods Causing
Misunderstood Ilardware Interfaces:
1-Lack of communication between
hardware and software teams 24%  (11) | 28% (13) | 27% (1) | 3570 (8
2-Hardware behavior not documented 30% 14) | 32% (15) 46% (12) 30% (7




Table 4b. Process Flaws Causing Functional Faults

Process Flaws:

|. Flaws in Control of System
Complexity:
1-Requirements not identified:
unknown, undocumented, or wrong

__2-Requirements not understood

| sdey-Related
Functional Faults Functional Faults
Voyager Galileo Voyager Galileo
(87) (199) G (96)

37%  (32) | 53%  (105) | 44% 1) | 60% (58)
63% s5) | 47% 94) | 56% @n | 40%  (38)

Ila. Flaws in Communication or
Development Methods, causing
errors in Recognizing
Requirements:

1-Specifications imprecise or
unsystematic

2-Requirements missing from
requirements documents

16%  (14) | 28% 5) | 21% 100 | 38%  (36)

31% 27) | 35% 69) | 42% 20) | 42% (40)

1Ib. Flaws in Communication or
Development Methods, causing
errors in Deploying Requirements:
1-Incomplete documentation
of requirements or changes

2-Coding errors persisting until
system testing

3-Design inadequate to perform
required functions

6% G) | 10% 0) | 2% M| 8% ©)
18%  (16) | 9% 18) | 10% G) | 5% (5)
29%  (25) | 19% @7 | 25% 12 | 7% (7)




